Interdependency Pattern Recognition in Econometrics: A Penalized Regularization Antidote

نویسندگان

چکیده

When it comes to variable interpretation, multicollinearity is among the biggest issues that must be surmounted, especially in this new era of Big Data Analytics. Since even moderate size can prevent proper special diagnostics recommended and implemented for identification purposes. Nonetheless, areas econometrics statistics, other fields, these are controversial concerning their “successfulness”. It has been remarked they frequently fail do model assessment due information complexity, resulting misspecification. This work proposes investigates a robust easily interpretable methodology, termed Elastic Information Criterion, capable capturing rather accurately effectively thus providing assessment. The performance investigated via simulated real data.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

pattern recognition in maintenance data using methodologies data minitng (cade study isfahan regional power electric company)

فعالیت های نگهداری و تعمیرات اطلاعاتی را تولید می کند که می تواند در تعیین زمان های بیکاری و ارایه یک برنامه زمان بندی شده یا تعیین هشدارهای خرابی به پرسنل نگهداری و تعمیرات کمک کند. وقتی که مقدار داده های تولید شده زیاد باشند، فهم بین متغیرها بسیار مشکل می شوند. این پایان نامه به کاربردی از داده کاوی برای کاوش پایگاه های داده چندبعدی در حوزه نگهداری و تعمیرات، برای پیدا کردن خرابی هایی که موجب...

15 صفحه اول

A penalized likelihood based pattern classification algorithm

Penalized likelihood is a general approach whereby an objective function is defined, consisting of the log likelihood of the data minus some term penalizing non-smooth solutions. Subsequently, this objective function is maximized, yielding a solution that achieves some sort of trade-off between the faithfulness and the smoothness of the fit. Most work on that topic focused on the regression pro...

متن کامل

Pattern Classification Using a Penalized Likelihood Method

Penalized likelihood is a well-known theoretically justified approach that has recently attracted attention by the machine learning society. The objective function of the Penalized likelihood consists of the log likelihood of the data minus some term penalizing non-smooth solutions. Subsequently, maximizing this objective function would lead to some sort of trade-off between the faithfulness an...

متن کامل

Penalized estimation in additive varying coefficient models using grouped regularization

Additive varying coefficient models are a natural extension of multiple linear regression models, allowing the regression coefficients to be functions of other variables. Therefore these models are more flexible to model more complex dependencies in data structures. In this paper we consider the problem of selecting in an automatic way the significant variables among a large set of variables, w...

متن کامل

Regularization parameter selection for penalized-maximum likelihood methods in PET

Penalized maximum likelihood methods are commonly used in positron emission tomography (PET). Due to the fact that a Poisson data-noise model is typically assumed, standard regularization parameter choice methods, such as the discrepancy principle or generalized cross validation, can not be directly applied. In recent work of the authors, regularization parameter choice methods for penalized ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Econometrics

سال: 2021

ISSN: ['2225-1146']

DOI: https://doi.org/10.3390/econometrics9040044